首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4285篇
  免费   734篇
  国内免费   456篇
化学   5114篇
晶体学   15篇
力学   26篇
综合类   25篇
数学   31篇
物理学   264篇
  2024年   6篇
  2023年   93篇
  2022年   96篇
  2021年   407篇
  2020年   400篇
  2019年   252篇
  2018年   218篇
  2017年   249篇
  2016年   355篇
  2015年   296篇
  2014年   318篇
  2013年   406篇
  2012年   310篇
  2011年   260篇
  2010年   229篇
  2009年   247篇
  2008年   213篇
  2007年   190篇
  2006年   172篇
  2005年   133篇
  2004年   137篇
  2003年   112篇
  2002年   60篇
  2001年   48篇
  2000年   35篇
  1999年   44篇
  1998年   36篇
  1997年   31篇
  1996年   18篇
  1995年   22篇
  1994年   15篇
  1993年   12篇
  1992年   7篇
  1991年   7篇
  1990年   5篇
  1989年   8篇
  1988年   6篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   6篇
  1980年   2篇
  1979年   3篇
  1971年   1篇
排序方式: 共有5475条查询结果,搜索用时 15 毫秒
61.
Azaperone, with anti-anxiety and anti-aggressive activities used in veterinary medicine, is a member of the butyrophenone class. It is ordinarily utilized for a wide range of indications, such as sedation, obstetrics, and anesthesia. In this research, an improved synthetic route is presented for azaperone using a phase-transfer catalyst(PTC). In general, it was synthesized as a dopamine antagonist in four steps. The bis(2-chloroethyl) amine intermediate is easily obtained after the conversion of the alcohol groups into the chloride leaving group using thionyl chloride(95% yields). The alkylation of commercially available 2-amino pyridine in the presence of PTC was then carried out, giving 1-(pyridin-2-yl) piperazine with 75% yield. 1-(Pyridin-2-yl) piperazine was finally alkylated using 4-chloro-1-(4-fluorophenyl) butan-1-one to achieve azaperone with 60% yield. The butyrophenone intermediate was obtained via the Friedel-Crafts reaction of fluorobenzene with 4-chlorobutyryl chloride in the presence of AlCl3. High efficiency, gentle reaction conditions, and fast and simple procedure are the advantages of this method. Also, the electrochemical oxidation behaviour of azaperone was investigated using cyclic and differential pulse voltammetry techniques. Cyclic voltammetric studies indicated an irreversible process for azaperone electro-oxidation with a peak potential of 0.78 V in a phosphate buffer solution(pH=7.0) vs. Ag/AgCl(saturated KCl) electrode. The value of the peak current vs. the azaperone concentration was enhanced linearly in the range of 10―70 μmol/L, and the detection limit was found to be 3.33 μmol/L.  相似文献   
62.
In this study, the general processability of cannabidiol (CBD) in colloidal lipid carriers was investigated. Due to its many pharmacological effects, the pharmaceutical use of this poorly water-soluble drug is currently under intensive research and colloidal lipid emulsions are a well-established formulation option for such lipophilic substances. To obtain a better understanding of the formulability of CBD in lipid emulsions, different aspects of CBD loading and its interaction with the emulsion droplets were investigated. Very high drug loads (>40% related to lipid content) could be achieved in emulsions of medium chain triglycerides, rapeseed oil, soybean oil and trimyristin. The maximum CBD load depended on the type of lipid matrix. CBD loading increased the particle size and the density of the lipid matrix. The loading capacity of a trimyristin emulsion for CBD was superior to that of a suspension of solid lipid nanoparticles based on trimyristin (69% vs. 30% related to the lipid matrix). In addition to its localization within the lipid core of the emulsion droplets, cannabidiol was associated with the droplet interface to a remarkable extent. According to a stress test, CBD destabilized the emulsions, with phospholipid-stabilized emulsions being more stable than poloxamer-stabilized ones. Furthermore, it was possible to produce emulsions with pure CBD as the dispersed phase, since CBD demonstrated such a pronounced supercooling tendency that it did not recrystallize, even if cooled to −60 °C.  相似文献   
63.
Non-small cell lung cancer (NSCLC) is a lethal non-immunogenic malignancy and proto-oncogene ROS-1 tyrosine kinase is one of its clinically relevant oncogenic markers. The ROS-1 inhibitor, crizotinib, demonstrated resistance due to the Gly2032Arg mutation. To curtail this resistance, researchers developed lorlatinib against the mutated kinase. In the present study, a receptor-ligand pharmacophore model exploiting the key features of lorlatinib binding with ROS-1 was exploited to identify inhibitors against the wild-type (WT) and the mutant (MT) kinase domain. The developed model was utilized to virtually screen the TimTec flavonoids database and the retrieved drug-like hits were subjected for docking with the WT and MT ROS-1 kinase. A total of 10 flavonoids displayed higher docking scores than lorlatinib. Subsequent molecular dynamics simulations of the acquired flavonoids with WT and MT ROS-1 revealed no steric clashes with the Arg2032 (MT ROS-1). The binding free energy calculations computed via molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) demonstrated one flavonoid (Hit) with better energy than lorlatinib in binding with WT and MT ROS-1. The Hit compound was observed to bind in the ROS-1 selectivity pocket comprised of residues from the β-3 sheet and DFG-motif. The identified Hit from this investigation could act as a potent WT and MT ROS-1 inhibitor.  相似文献   
64.
The evolution of different antimicrobial drugs in terrestrial, microgravity and hypergravity conditions is presented within this review, in connection with their implementation during human space exploration. Drug stability is of utmost importance for applications in outer space. Instabilities may be radiation-induced or micro-/hypergravity produced. The antimicrobial agents used in space may have diminished effects not only due to the microgravity-induced weakened immune response of astronauts, but also due to the gravity and radiation-altered pathogens. In this context, the paper provides schemes and procedures to find reliable ways of fighting multiple drug resistance acquired by microorganisms. It shows that the role of multipurpose medicines modified at the molecular scale by optical methods in long-term space missions should be considered in more detail. Solutions to maintain drug stability, even in extreme environmental conditions, are also discussed, such as those that would be encountered during long-duration space exploratory missions. While the microgravity conditions may not be avoided in space, the suggested approaches deal with the radiation-induced modifications in humans, bacteria and medicines onboard, which may be fought by novel pharmaceutical formulation strategies along with radioprotective packaging and storage.  相似文献   
65.
Metastasis is the major cause of death in colorectal cancer and it has been proven that inhibiting an interaction between adenomatous polyposis coli (APC) and Rho guanine nucleotide exchange factor 4 (Asef) efficaciously restrain metastasis. However, current inhibitors cannot achieve a satisfying effect in vivo and need to be optimized. In the present study, we applied molecular dynamics (MD) simulations and extensive analyses to apo and holo APC systems in order to reveal the inhibitor mechanism in detail and provide insights into optimization. MD simulations suggested that apo APC takes on a broad array of conformations and inhibitors stabilize conformation selectively. Representative structures in trajectories show specific APC-ligand interactions, explaining the different binding process. The stability and dynamic properties of systems elucidate the inherent factors of the conformation selection mechanism. Binding free energy analysis quantitatively confirms key interface residues and guide optimization. This study elucidates the conformation selection mechanism in APC-Asef inhibition and provides insights into peptide-based drug design.  相似文献   
66.
Drug nanocarriers (NCs) with sizes usually below 200 nm are gaining increasing interest in the treatment of severe diseases such as cancer and infections. Characterization methods to investigate the morphology and physicochemical properties of multifunctional NCs are key in their optimization and in the study of their in vitro and in vivo fate. Whereas a variety of methods has been developed to characterize “bulk” NCs in suspension, the scope of this review is to describe the different approaches for the NC characterization on an individual basis, for which fewer techniques are available. The accent is put on methods devoid of labelling, which could lead to artefacts. For each characterization method, the principles and approaches to analyze the data are presented in an accessible manner. Aspects related to sample preparation to avoid artefacts are indicated, and emphasis is put on examples of applications. NC characterization on an individual basis allows gaining invaluable information in terms of quality control, on: i) NC localization and fate in biological samples; ii) NC morphology and crystallinity; iii) distribution of the NC components (drugs, shells), and iv) quantification of NCs’ chemical composition. The individual characterization approaches are expected to gain increasing interest in the near future.  相似文献   
67.
《Mendeleev Communications》2022,32(5):591-593
Water-dispersible complexes of 4-methyl-N-[5-methyl-3-(3,4,5-trimethoxyphenyl)isoxazol-4-yl]benzamide possessing anticancer activity were prepared by its immobilization with biocompatible polymer nanocontainers based on sodium alginate cross-linked with Ca2+ and Mg2+ ions. It was found that this isoxazole derivative retains its structure during immobilization. Colloidal stable nanocontainers filled with this compound exhibit toxicity toward the colon carcinoma (HCT116) tumor cell line.  相似文献   
68.
We report boronate-caged guanidine-lipid 1 that activates liposomes for cellular delivery only upon uncaging of this compound by reactive oxygen species (ROS) to produce cationic lipid products. These liposomes are designed to mimic the exceptional cell delivery properties of cell-penetrating peptides (CPPs), while the inclusion of the boronate cage is designed to enhance selectivity such that cell entry will only be activated in the presence of ROS. Boronate uncaging by hydrogen peroxide was verified by mass spectrometry and zeta potential (ZP) measurements. A microplate-based fluorescence assay was developed to study the ROS-mediated vesicle interactions between 1 -liposomes and anionic membranes, which were further elucidated via dynamic light scattering (DLS) analysis. Cellular delivery studies utilizing fluorescence microscopy demonstrated significant enhancements in cellular delivery only when 1 -liposomes were incubated with hydrogen peroxide. Our results showcase that lipid 1 exhibits strong potential as an ROS-responsive liposomal platform for targeted drug delivery applications.  相似文献   
69.
Thiol‐responsive micelles consisting of novel nonionic gemini surfactants with a cystine disulfide spacer are reported. The gemini surfactants, (C18‐Cys‐mPEG)2 and ((C18)2‐Lys‐Cys‐mPEG)2, were synthesized from polyethylene glycol, cysteine, and stearic acid, and their structures were confirmed by 1H NMR and gel permeation chromatography. (C18‐Cys‐mPEG)2 and ((C18)2‐Lys‐Cys‐mPEG)2 formed micelles with average diameters of 13 and 22 nm above the critical micelle concentration of 6.5 and 4.7 µg mL?1, respectively. The micelles of ((C18)2‐Lys‐Cys‐mPEG)2 containing more stearoyl groups showed encapsulated more hydrophobic indomethacin (IMC) with higher entrapment efficiencies than those of (C18‐Cys‐mPEG)2. The gemini surfactant micelles exhibited an accelerated release of encapsulated IMC with the concentration of the reducing agent, glutathione (GSH), whereas they were unaffected by the presence of reduced GSH (GSSG). The 3‐(4,5‐dimethylthiazol‐2‐yl)‐5‐(3‐carboxymethoxyphenyl)?2‐(4‐sulfophenyl)?2H‐tetrazolium studies revealed the noncytotoxic nature of the gemini surfactant micelles. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 582–589  相似文献   
70.
In this study, a facile method to fabricate reduction‐responsive core‐crosslinked micelles via in situ thiol‐ene “click” reaction was reported. A series of biodegradable poly(ether‐ester)s with multiple pendent mercapto groups were first synthesized by melt polycondensation of diol poly(ethylene glycol), 1,4‐butanediol, and mercaptosuccinic acid using scandium trifluoromethanesulfonate [Sc(OTf)3] as the catalyst. Then paclitaxel (PTX)‐loaded core‐crosslinked (CCL) micelles were successfully prepared by in situ crosslinking hydrophobic polyester blocks in aqueous media via thiol‐ene “click” chemistry using 2,2′‐dithiodiethanol diacrylate as the crosslinker. These PTX‐loaded CCL micelles with disulfide bonds exhibited reduction‐responsive behaviors in the presence of dithiothreitol (DTT). The drug release profile of the PTX‐loaded CCL micelles revealed that only a small amount of loaded PTX was released slowly in phosphate buffer solution (PBS) without DTT, while quick release was observed in the presence of 10.0 mM DTT. Cell count kit (CCK‐8) assays revealed that the reduction‐sensitive PTX‐loaded CCL micelles showed high antitumor activity toward HeLa cells, which was significantly higher than that of reduction‐insensitive counterparts and free PTX. This kind of biodegradable and biocompatible CCL micelles could serve as a bioreducible nanocarrier for the controlled antitumor drug release. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 99–107  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号